论文标题
伪造新闻检测的引导多视图表示
Bootstrapping Multi-view Representations for Fake News Detection
论文作者
论文摘要
先前关于多媒体假新闻检测的研究包括一系列复杂的功能提取和融合网络,以从新闻中收集有用的信息。但是,跨模式的一致性与新闻的保真度以及不同方式的特征如何影响决策是开放的问题。本文介绍了一个新颖的自举动多视图表示(BMR),以进行虚假新闻检测。给定一个多模式的新闻,我们分别从文本的观点,图像模式和图像语义上提取表示形式。提出了改进的多门外科车网络(IMMOE),以进行特征细化和融合。从每种视图中的表示形式分别用于粗略预测整个新闻的保真度,并且多模式表示能够预测跨模式的一致性。以预测分数,我们重新升高了表示形式的每一个观点,并引导它们以进行虚假新闻检测。对典型的假新闻检测数据集进行的广泛实验证明,拟议的BMR的表现要优于最先进的方案。
Previous researches on multimedia fake news detection include a series of complex feature extraction and fusion networks to gather useful information from the news. However, how cross-modal consistency relates to the fidelity of news and how features from different modalities affect the decision-making are still open questions. This paper presents a novel scheme of Bootstrapping Multi-view Representations (BMR) for fake news detection. Given a multi-modal news, we extract representations respectively from the views of the text, the image pattern and the image semantics. Improved Multi-gate Mixture-of-Expert networks (iMMoE) are proposed for feature refinement and fusion. Representations from each view are separately used to coarsely predict the fidelity of the whole news, and the multimodal representations are able to predict the cross-modal consistency. With the prediction scores, we reweigh each view of the representations and bootstrap them for fake news detection. Extensive experiments conducted on typical fake news detection datasets prove that the proposed BMR outperforms state-of-the-art schemes.