论文标题

联合图形注意力网络用于谣言检测

Federated Graph Attention Network for Rumor Detection

论文作者

Wang, Huidong, Bai, Chuanzheng, Yao, Jinli

论文摘要

随着网络技术的发展,许多社交媒体正在蓬勃发展。由于不完善的互联网监管,虚假谣言的传播已成为这些社交平台上的一个普遍问题。社交平台可以在其运营过程中产生谣言数据,但是现有的谣言检测模型都是为单个社交平台构建的,该平台忽略了跨平台谣言的价值。本文将联合学习范式与双向图注意网络谣言检测模型相结合,并提出了联合图形注意网络(FedGat)模型以进行谣言检测。可以确保每个社交平台的数据信息的安全性,从而利用横向平台谣言检测的水平联合学习的优势。我们将服务器端和客户端模型构建为联合学习范式框架中的双向图注意网络谣言检测模型。客户端的本地模型可以在迭代过程中训练和验证社交平台的谣言数据,而服务器端的模型仅扮演着汇总不同社交平台模型的特征,并且不参与模型的培训。最后,我们对谣言数据集进行了仿真实验,实验结果表明,本文提出的联合图形注意网络模型对于跨平台谣言检测有效。

With the development of network technology, many social media are flourishing. Due to imperfect Internet regulation, the spread of false rumors has become a common problem on those social platforms. Social platforms can generate rumor data in their operation process, but existing rumor detection models are all constructed for a single social platform, which ignores the value of cross-platform rumor. This paper combines the federated learning paradigm with the bidirectional graph attention network rumor detection model and proposes the federated graph attention network(FedGAT) model for rumor detection. Taking the advantages of horizontal federated learning for cross-platform rumor detection, the security of each social platform's data information can be ensured. We construct both the server-side and client-side models as a bidirectional graph attention network rumor detection model in the federated learning paradigm framework. The local model on the client-side can train and verify the rumor data of the social platform in the iterative process, while the model on the server-side only plays the role of aggregating the characteristics of different social platform models and does not participate in the training of the model. Finally, we conduct simulation experiments on the rumor datasets and the experimental results show that the federated graph attention network model proposed in this paper is effective for cross-platform rumor detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源