论文标题

de vries二元性对紧凑型Hausdorff空间之间的封闭关系的概括

A generalization of de Vries duality to closed relations between compact Hausdorff spaces

论文作者

Abbadini, Marco, Bezhanishvili, Guram, Carai, Luca

论文摘要

石头双重性概括到类别之间的等价性$ \ mathsf {stone}^{\ Mathsf {r}} $的石头空间和封闭关系,以及$ \ Mathsf {ba}^\ Mathsf {s}布尔氏algebras和下属关系的$。在$ \ Mathsf {Stone}^{\ Mathsf {r}} $中分配等价,产生的类别等于$ \ Mathsf {Khaus}^\ Mathsf {r} $ compact hausdorff space and Claste and Claste and Claste and Clande and Clande and Clange and Clande。同样,在$ \ mathsf {ba}^\ mathsf {s} $中拆分等价产生的类别与de Vries代数的类别$ \ Mathsf {dev^s} $等同。然后,应用寓言的机制会产生$ \ mathsf {khaus}^\ mathsf {r} $等同于$ \ mathsf {dev^s} $,因此解决了最近在文献中提出的问题。 $ \ Mathsf {khaus}^\ Mathsf {r} $和$ \ Mathsf {dev^s} $之间的等价性,进一步限制了类别$ {\ Mathsf {khaus}} $ compact Hausdorff Space and dec dep $ nath subcate $ { $ \ mathsf {dev^s} $的形态满足其他条件。这可以替代双重性。这种方法的一个优点是,形态的组成是通常的关系组成。

Stone duality generalizes to an equivalence between the categories $\mathsf{Stone}^{\mathsf{R}}$ of Stone spaces and closed relations and $\mathsf{BA}^\mathsf{S}$ of boolean algebras and subordination relations. Splitting equivalences in $\mathsf{Stone}^{\mathsf{R}}$ yields a category that is equivalent to the category $\mathsf{KHaus}^\mathsf{R}$ of compact Hausdorff spaces and closed relations. Similarly, splitting equivalences in $\mathsf{BA}^\mathsf{S}$ yields a category that is equivalent to the category $\mathsf{DeV^S}$ of de Vries algebras and compatible subordination relations. Applying the machinery of allegories then yields that $\mathsf{KHaus}^\mathsf{R}$ is equivalent to $\mathsf{DeV^S}$, thus resolving a problem recently raised in the literature. The equivalence between $\mathsf{KHaus}^\mathsf{R}$ and $\mathsf{DeV^S}$ further restricts to an equivalence between the category ${\mathsf{KHaus}}$ of compact Hausdorff spaces and continuous functions and the wide subcategory $\mathsf{DeV^F}$ of $\mathsf{DeV^S}$ whose morphisms satisfy additional conditions. This yields an alternative to de Vries duality. One advantage of this approach is that composition of morphisms is usual relation composition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源