论文标题
跌落非谐波的Slinkys
Falling non-harmonic Slinkys
论文作者
论文摘要
从顶部支撑的拉伸平衡位置开始,然后释放到重力的影响下,这表现出有趣的行为,直到Slinky的底部直到Slinky的倒塌顶部到达底部,Slinky的底部才移动。在本文中,我们使用数值方法研究了这个问题,以研究该特性是否具有概括性物理学的概括,例如从传统的钩子法改变恢复力,还是考虑质量的随机和不均匀分布。
Slinkys that start from a stretched equilibrium position supported at the top and then released to fall under the influence of gravity exhibit the interesting behavior that the bottom of the slinky does not move until the collapsing top of the Slinky reaches the bottom. In this paper, we examine this problem using numerical methods to investigate whether this property holds for generalizations of the slinky physics such as changing the restoring force from the traditional Hookes law or considering random and non-uniform distributions of masses.