论文标题
反应扩散系统的全球存在和渐近行为具有无限系数
Global existence and asymptotic behavior for a reaction-diffusion system with unbounded coefficients
论文作者
论文摘要
我们考虑了一个反应扩散系统,该系统可以用作化学中发酵催化反应的模型。该模型由一个反应扩散方程系统组成,具有无限的时间依赖性系数和不同的多项式反应项。证明了全球界面解决方案的指数衰减。证明的关键工具是分析半群和某些不平等的属性。
We consider a reaction-diffusion system which may serve as a model for a ferment catalytic reaction in chemistry. The model consists of a system of reaction diffusion equations with unbounded time dependent coefficients and different polynomial reaction terms. An exponential decay of the globally bounded solutions is proved. The key tool of the proofs are properties of analytic semigroups and some inequalities.