论文标题
由非铁皮皮肤效应诱导的纠缠相位过渡
Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect
论文作者
论文摘要
近年来,在开放量子系统中有了显着的发展,该系统有效地描述了非热汉密尔顿人。非铁人拓扑系统的一个独特特征是皮肤效应,这是由非偏置耗散驱动的大量本征态的异常定位。尽管它对非铁拓拓扑阶段的重要性,但皮肤效应与量子纠缠和关键现象的相关性尚不清楚。在这里,我们发现皮肤效应诱导纠缠动力学中的非平衡量子相变。我们表明,皮肤效应引起颗粒的宏观流,并抑制纠缠的传播和热化,从而导致纠缠熵的面积定律,处于非平衡稳态。此外,我们揭示了即使没有混乱或相互作用的统一动力学和皮肤效应之间的竞争引起的纠缠相位过渡。这种纠缠相变伴随着非平衡的量子临界性,其特征是无单位的共形场理论,其有效的中央电荷对边界条件极为敏感。我们还证明了它源自非富米顿汉密尔顿人的特殊点以及根据权力法所定位的皮肤模式的随之而来的尺度不变性。此外,我们表明,即使在Lindblad Master方程描述的Markovian开放量子系统中,皮肤效应也会导致von Neumann熵的纯化和还原。我们的工作打开了一种控制纠缠增长的方法,并建立了对远离热平衡的开放量子系统中相变和关键现象的基本理解。
Recent years have seen remarkable development in open quantum systems effectively described by non-Hermitian Hamiltonians. A unique feature of non-Hermitian topological systems is the skin effect, anomalous localization of an extensive number of eigenstates driven by nonreciprocal dissipation. Despite its significance for non-Hermitian topological phases, the relevance of the skin effect to quantum entanglement and critical phenomena has remained unclear. Here, we find that the skin effect induces a nonequilibrium quantum phase transition in the entanglement dynamics. We show that the skin effect gives rise to a macroscopic flow of particles and suppresses the entanglement propagation and thermalization, leading to the area law of the entanglement entropy in the nonequilibrium steady state. Moreover, we reveal an entanglement phase transition induced by the competition between the unitary dynamics and the skin effect even without disorder or interactions. This entanglement phase transition accompanies nonequilibrium quantum criticality characterized by a nonunitary conformal field theory whose effective central charge is extremely sensitive to the boundary conditions. We also demonstrate that it originates from an exceptional point of the non-Hermitian Hamiltonian and the concomitant scale invariance of the skin modes localized according to the power law. Furthermore, we show that the skin effect leads to the purification and the reduction of von Neumann entropy even in Markovian open quantum systems described by the Lindblad master equation. Our work opens a way to control the entanglement growth and establishes a fundamental understanding of phase transitions and critical phenomena in open quantum systems far from thermal equilibrium.