论文标题
在Feynman图,曲霉和GKZ-System上
On Feynman graphs, matroids, and GKZ-systems
论文作者
论文摘要
我们在几种重要情况下表明,$ $ - 送出的$ hypheremements系统连接到lee-pomeransky形式的Feynman图上,通过将Momenta和非零质量视为不确定的元素,具有正常的基础半群。这继续由克劳森(Klausen)发起,并由Helmer和Tellander进行了研究。在此过程中,我们确定了与情况相关的几种相关矩形并探索其关系。
We show in several important cases that the $A$-hypergeometric system attached to a Feynman diagram in Lee--Pomeransky form, obtained by viewing the momenta and the nonzero masses as indeterminates, has a normal underlying semigroup. This continues a quest initiated by Klausen, and studied by Helmer and Tellander. In the process we identify several relevant matroids related to the situation and explore their relationships.