论文标题

关于安全使用先前密度进行贝叶斯模型选择

On the safe use of prior densities for Bayesian model selection

论文作者

Llorente, F., Martino, L., Curbelo, E., Lopez-Santiago, J., Delgado, D.

论文摘要

如今,贝叶斯推论的应用非常流行。在此框架中,模型通过其边际可能性或其商称为贝叶斯因素进行比较。但是,边际可能性取决于先前的选择。对于模型选择,与参数估计问题不同,即使是分散的先验也可能非常有用。此外,当先验不当时,相应模型的边际可能性是不确定的。在这项工作中,我们讨论了边际可能性及其在模型选择中的作用的先前敏感性的问题。我们还评论了使用非信息性先验,这在实践中是非常常见的选择。讨论了一些实际建议,并描述了文献中提出的许多可能的解决方案,以设计用于模型选择的客观先验。其中一些还允许使用不当的先验。还提出了边际可能性方法与众所周知的信息标准之间的联系。我们通过说明性的数值示例描述了主要问题和可能的解决方案,还提供了一些相关的代码。其中之一涉及外行星检测的现实应用。

The application of Bayesian inference for the purpose of model selection is very popular nowadays. In this framework, models are compared through their marginal likelihoods, or their quotients, called Bayes factors. However, marginal likelihoods depends on the prior choice. For model selection, even diffuse priors can be actually very informative, unlike for the parameter estimation problem. Furthermore, when the prior is improper, the marginal likelihood of the corresponding model is undetermined. In this work, we discuss the issue of prior sensitivity of the marginal likelihood and its role in model selection. We also comment on the use of uninformative priors, which are very common choices in practice. Several practical suggestions are discussed and many possible solutions, proposed in the literature, to design objective priors for model selection are described. Some of them also allow the use of improper priors. The connection between the marginal likelihood approach and the well-known information criteria is also presented. We describe the main issues and possible solutions by illustrative numerical examples, providing also some related code. One of them involving a real-world application on exoplanet detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源