论文标题

多方面的图形注意网络,用于异质雷达网络中的雷达目标识别

Multi-faceted Graph Attention Network for Radar Target Recognition in Heterogeneous Radar Network

论文作者

Meng, Han, Peng, Yuexing, Xiang, Wei, Pang, Xu, Wang, Wenbo

论文摘要

雷达目标识别(RTR)是智能雷达系统的关键技术,已得到充分研究。低信噪比(SNR)的准确RTR仍然是一个开放的挑战。大多数现有的方法基于单个雷达或同质雷达网络,这些网络无法完全利用频率信息。在本文中,提出了一个两流语义特征融合模型,称为多面图网络(MF-GAT),以极大地提高异质雷达网络的低SNR区域的准确性。通过融合从源域提取的功能并通过图形注意网络模型转换域,MF-GAT模型在统一框架中分类前会提取更高级别的语义特征。提出了广泛的实验,以证明所提出的模型可以大大改善低SNR的RTR性能。

Radar target recognition (RTR), as a key technology of intelligent radar systems, has been well investigated. Accurate RTR at low signal-to-noise ratios (SNRs) still remains an open challenge. Most existing methods are based on a single radar or the homogeneous radar network, which do not fully exploit frequency-dimensional information. In this paper, a two-stream semantic feature fusion model, termed Multi-faceted Graph Attention Network (MF-GAT), is proposed to greatly improve the accuracy in the low SNR region of the heterogeneous radar network. By fusing the features extracted from the source domain and transform domain via a graph attention network model, the MF-GAT model distills higher-level semantic features before classification in a unified framework. Extensive experiments are presented to demonstrate that the proposed model can greatly improve the RTR performance at low SNRs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源