论文标题

对称分辨的页面曲线

Symmetry-resolved Page curves

论文作者

Murciano, Sara, Calabrese, Pasquale, Piroli, Lorenzo

论文摘要

给定量子状态的统计集合,相应的页面曲线量化了与系统的每个可能的空间两部分相关的平均纠缠熵。在这项工作中,我们研究了在保护定律的存在下的自然扩展,并引入了对称性分辨的页面曲线,表征了平均两分对称分解的纠缠熵。我们为具有$ u(1)$ - 对称性的两个重要统计合奏提供了显式分析公式:haar-random纯状态和随机的费米子高斯州。在前一种情况下,可以从标准曲线的知识中以基本的方式获得对称分辨的页面曲线。对于随机的费米斯高斯州而言,情况并非如此。在这种情况下,我们基于随机矩阵和大差异理论的技术组合在热力学极限中得出一个分析结果。我们测试了针对数值计算的预测,并讨论了子领先的有限尺寸校正。

Given a statistical ensemble of quantum states, the corresponding Page curve quantifies the average entanglement entropy associated with each possible spatial bipartition of the system. In this work, we study a natural extension in the presence of a conservation law and introduce the symmetry-resolved Page curves, characterizing average bipartite symmetry-resolved entanglement entropies. We derive explicit analytic formulae for two important statistical ensembles with a $U(1)$-symmetry: Haar-random pure states and random fermionic Gaussian states. In the former case, the symmetry-resolved Page curves can be obtained in an elementary way from the knowledge of the standard one. This is not true for random fermionic Gaussian states. In this case, we derive an analytic result in the thermodynamic limit based on a combination of techniques from random-matrix and large-deviation theories. We test our predictions against numerical calculations and discuss the sub-leading finite-size corrections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源