论文标题
基于混合噪声模型和加权正则化的GPU加速光场超分辨率框架
A GPU-Accelerated Light-field Super-resolution Framework Based on Mixed Noise Model and Weighted Regularization
论文作者
论文摘要
本文介绍了在混合高斯 - 突破噪声条件下重建高分辨率(HR)LF图像的GPU加速计算框架。主要重点是考虑处理速度和重建质量的高性能方法。从统计的角度来看,我们得出了一个联合$ \ ell^1 $ - $ \ ell^2 $数据保真度,以罚款,以考虑到混合噪声情况,以罚款人力资源重建错误。对于正则化,我们采用了加权的非本地总变异方法,这使我们能够通过适当的加权方案有效地实现LF图像。我们表明,乘数算法的交替方向方法可用于简化计算复杂性,并在GPU平台上导致高性能并行计算。对合成4D LF数据集和自然图像数据集进行了广泛的实验,以验证所提出的SR模型的鲁棒性并评估加速优化器的性能。实验结果表明,与最先进的方法相比,我们的方法在严重的混合噪声条件下实现了更好的重建质量。此外,提议的方法克服了以前的工作处理大规模SR任务的局限性。虽然安装在单个现成的GPU中时,该提议的加速器的平均加速度分别为2.46 $ \ times $和1.57 $ \ times $,分别为$ \ times 2 $和$ \ times 3 $ SR任务。此外,与CPU执行相比,达到$ 77 \ times $的加速。
This paper presents a GPU-accelerated computational framework for reconstructing high resolution (HR) LF images under a mixed Gaussian-Impulse noise condition. The main focus is on developing a high-performance approach considering processing speed and reconstruction quality. From a statistical perspective, we derive a joint $\ell^1$-$\ell^2$ data fidelity term for penalizing the HR reconstruction error taking into account the mixed noise situation. For regularization, we employ the weighted non-local total variation approach, which allows us to effectively realize LF image prior through a proper weighting scheme. We show that the alternating direction method of multipliers algorithm (ADMM) can be used to simplify the computation complexity and results in a high-performance parallel computation on the GPU Platform. An extensive experiment is conducted on both synthetic 4D LF dataset and natural image dataset to validate the proposed SR model's robustness and evaluate the accelerated optimizer's performance. The experimental results show that our approach achieves better reconstruction quality under severe mixed-noise conditions as compared to the state-of-the-art approaches. In addition, the proposed approach overcomes the limitation of the previous work in handling large-scale SR tasks. While fitting within a single off-the-shelf GPU, the proposed accelerator provides an average speedup of 2.46$\times$ and 1.57$\times$ for $\times 2$ and $\times 3$ SR tasks, respectively. In addition, a speedup of $77\times$ is achieved as compared to CPU execution.