论文标题
线性和非线性周期性schr {Ö}的先验误差分析具有分析势的dinger方程
A priori error analysis of linear and nonlinear periodic Schr{ö}dinger equations with analytic potentials
论文作者
论文摘要
本文涉及具有分析势的线性和非线性schr {Ö}方程的数值分析。虽然在线性情况下,电势的规律性(以及一个源术语)自动传达到解决方案中,但在非线性情况下,这不再是正确的。我们还研究了用于计算解决方案数值近似值的PlaneWave(傅立叶)离散方法的收敛速率。
This paper is concerned with the numerical analysis of linear and nonlinear Schr{ö}dinger equations with analytic potentials. While the regularity of the potential (and the source term when there is one) automatically conveys to the solution in the linear cases, this is no longer true in general in the nonlinear case. We also study the rate of convergence of the planewave (Fourier) discretization method for computing numerical approximations of the solution.