论文标题
关于有限古典群体的lusztig参数化的独立性和歧义
On the Unicity and the Ambiguity of Lusztig Parametrizations for Finite Classical Groups
论文作者
论文摘要
lusztig对应是由$ g $的双重组件$(g^*)$(g^*)^0 $的lusztig系列索引的lusztig系列索引,$ g $的$(g^*)^0 $ n $ s $ G $ g $ g $ g $ g $ g $ g $ g $(g^*)^0 $。在本文中,我们讨论了这种族裔对应关系的统一性和歧义。特别是,我们表明,如果我们要求它与抛物线诱导和有限的theta对应关系兼容,则可以使经典群的lusztig对应变得独一无二。
The Lusztig correspondence is a bijective mapping between the Lusztig series indexed by the conjugacy class of a semisimple element $s$ in the connected component $(G^*)^0$ of the dual group of $G$ and the set of irreducible unipotent characters of the centralizer of $s$ in $G^*$. In this article we discuss the unicity and ambiguity of such a bijective correspondence. In particular, we show that the Lusztig correspondence for a classical group can be made to be unique if we require it to be compatible with the parabolic induction and the finite theta correspondence.