论文标题
epoiriant $ \ mathbb r $ - 偏光球形品种的测试配置
Equivariant $\mathbb R$-test configurations of polarized spherical varieties
论文作者
论文摘要
令$ g $为一个连接的,复杂的还原谎言组,$ g/h $是球形同质空间。令$(x,l)$为两极分化的$ g $ - 变化,是$ g/h $的球形嵌入。在本文中,我们通过组合数据对$(x,l)$的$ g $ equivariant普通$ \ mathbb r $ -test配置进行了分类。特别是,我们对特殊的分类进行了分类,并证明了$ g $ equivariant特殊$ \ mathbb r $ -test配置的中央纤维的有限定理。另外,作为一个应用程序,我们研究了$ \ Mathbb Q $ -Fano球形品种的可分离变性问题。
Let $G$ be a connected, complex reductive Lie group and $G/H$ a spherical homogenous space. Let $(X,L)$ be a polarized $G$-variety which is a spherical embedding of $G/H$. In this paper we classify $G$-equivariant normal $\mathbb R$-test configurations of $(X,L)$ via combinatory data. In particular we classify the special ones, and prove a finiteness theorem of central fibres of $G$-equivariant special $\mathbb R$-test configurations. Also, as an application we study the semistable degeneration problem of a $\mathbb Q$-Fano spherical variety.