论文标题
在和谐的色度图上
On the harmonious chromatic number of graphs
论文作者
论文摘要
图$ g $的和谐的色度数是可以以适当的方式分配给$ g $的顶点的最小颜色数,以使任何两个不同的边缘具有不同的颜色对。本文为与同态,有限线性系统的发病率图和某些循环图相关的和谐色数提供了各种结果。
The harmonious chromatic number of a graph $G$ is the minimum number of colors that can be assigned to the vertices of $G$ in a proper way such that any two distinct edges have different color pairs. This paper gives various results on harmonious chromatic number related to homomorphisms, incidence graphs of finite linear systems, and some circulant graphs.