论文标题
部分量子图的通用性能
Universal Properties of Partial Quantum Maps
论文作者
论文摘要
我们提供了有限维c*代数的类别的普遍结构,以及来自有限维的希尔伯特空间和一户的索具类别的完全积极的痕量毫无痕迹地图。该结构可以应用于任何匕首索具类别,分为三个步骤,每个步骤都与他们自己的普遍属性相关联,并借鉴了有限维度的扩张理论的结果。通过这种方式,我们明确构建了捕获混合量子/经典计算的类别,并从其可逆基础类别中可能进行非终止。我们讨论如何在量子编程语言的设计和语义中使用这种结构。
We provide a universal construction of the category of finite-dimensional C*-algebras and completely positive trace-nonincreasing maps from the rig category of finite-dimensional Hilbert spaces and unitaries. This construction, which can be applied to any dagger rig category, is described in three steps, each associated with their own universal property, and draws on results from dilation theory in finite dimension. In this way, we explicitly construct the category that captures hybrid quantum/classical computation with possible nontermination from the category of its reversible foundations. We discuss how this construction can be used in the design and semantics of quantum programming languages.