论文标题
联合熵搜索最大信息的贝叶斯优化
Joint Entropy Search for Maximally-Informed Bayesian Optimization
论文作者
论文摘要
信息理论的贝叶斯优化技术因其非侧型品质而成为优化昂贵的黑盒功能的流行,以优化昂贵的黑盒功能。熵搜索和预测性熵搜索都考虑了输入空间中最佳的熵,而最新的最大值熵搜索则考虑了输出空间中最佳值的熵。我们提出了联合熵搜索(JES),这是一种新的信息理论采集函数,考虑了全新的数量,即输入和输出空间上关节最佳概率密度的熵。为了结合这些信息,我们考虑熵的最佳输入/输出对的调节,熵的减少。最终的方法主要依赖于标准的GP机械,并去除通常与信息理论方法相关的复杂近似值。凭借最少的计算开销,JES表现出了卓越的决策,并在各种任务中提供了信息理论方法的最新性能。作为具有出色结果的轻重量方法,JES为贝叶斯优化提供了新的首选功能。
Information-theoretic Bayesian optimization techniques have become popular for optimizing expensive-to-evaluate black-box functions due to their non-myopic qualities. Entropy Search and Predictive Entropy Search both consider the entropy over the optimum in the input space, while the recent Max-value Entropy Search considers the entropy over the optimal value in the output space. We propose Joint Entropy Search (JES), a novel information-theoretic acquisition function that considers an entirely new quantity, namely the entropy over the joint optimal probability density over both input and output space. To incorporate this information, we consider the reduction in entropy from conditioning on fantasized optimal input/output pairs. The resulting approach primarily relies on standard GP machinery and removes complex approximations typically associated with information-theoretic methods. With minimal computational overhead, JES shows superior decision-making, and yields state-of-the-art performance for information-theoretic approaches across a wide suite of tasks. As a light-weight approach with superior results, JES provides a new go-to acquisition function for Bayesian optimization.