论文标题

深卷积丽思方法:参数PDE代理没有标记的数据

Deep Convolutional Ritz Method: Parametric PDE surrogates without labeled data

论文作者

Fuhg, Jan Niklas, Karmarkar, Arnav, Kadeethum, Teeratorn, Yoon, Hongkyu, Bouklas, Nikolaos

论文摘要

偏微分方程(PDE)的参数替代模型是计算科学中许多应用的必要组件,并且在存在参数字段时,已证明卷积神经网络(CNN)是生成这些替代物的绝佳工具。 CNN通常是基于一对一参数输入和PDE输出字段对标记数据进行训练的。最近,已经提出了用于参数PDE的基于残留的卷积物理信息信息网络(CPINN)求解器,以构建替代物,而无需标记数据。这些允许产生代孕而没有昂贵的离线阶段。在这项工作中,我们提出了一种替代公式,称为“深卷积Ritz方法”(DCRM)作为参数PDE求解器。该方法基于能量功能的最小化,该功能与基于残留的方法相比降低了差分运算符的顺序。基于涉及具有空间参数化源项和边界条件的泊松方程的研究,我们发现,在收敛速度和概括能力方面,接受了标记的数据的CNN优于标记数据的CPINNS。然而,由DCRM产生的代孕剂的收敛速度明显快于其CPINN对应物,并且证明比从接受标记的数据和CPINN训练的CNN获得的代理更快,更好地概括。这暗示了DCRM可以使PDE解决方案替代物进行训练,而无需标记数据。

Parametric surrogate models for partial differential equations (PDEs) are a necessary component for many applications in the computational sciences, and convolutional neural networks (CNNs) have proved as an excellent tool to generate these surrogates when parametric fields are present. CNNs are commonly trained on labeled data based on one-to-one sets of parameter-input and PDE-output fields. Recently, residual-based convolutional physics-informed neural network (CPINN) solvers for parametric PDEs have been proposed to build surrogates without the need for labeled data. These allow for the generation of surrogates without an expensive offline-phase. In this work, we present an alternative formulation termed Deep Convolutional Ritz Method (DCRM) as a parametric PDE solver. The approach is based on the minimization of energy functionals, which lowers the order of the differential operators compared to residual-based methods. Based on studies involving the Poisson equation with a spatially parameterized source term and boundary conditions, we found that CNNs trained on labeled data outperform CPINNs in convergence speed and generalization ability. Surrogates generated from DCRM, however, converge significantly faster than their CPINN counterparts and prove to generalize faster and better than surrogates obtained from both CNNs trained on labeled data and CPINNs. This hints that DCRM could make PDE solution surrogates trained without labeled data possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源