论文标题
在大偏差原理和蒙格 - 安培等式(跟随伯曼,霍尔格伦)
On large deviation principles and the Monge--Ampère equation (following Berman, Hultgren)
论文作者
论文摘要
这主要是一个博览会,目的是在J. Hultgren的最新发展中,旨在供伯曼(R. Berman)的基本定理的几何学,分析师和概率分析师访问,这是J. Hultgren的最新发展,这断言,在许多概率的范围中,使用概率限制的次数限制了prictition的第二个边界价值问题,该问题的第二个边界价值问题是,在许多方程式中,王子的范围是princtiation的范围,这些方程的范围是多个粒子限制的,这些方程的范围是王子的范围,这是prictial的限制,这是王子的范围。 运输。提出了伯曼 - 霍尔格伦定理一步的替代证明,允许同时处理所有“温度”,而不是首先还原为零温度的情况。
This is mostly an exposition, aimed to be accessible to geometers, analysts, and probabilists, of a fundamental recent theorem of R. Berman with recent developments by J. Hultgren, that asserts that the second boundary value problem for the real Monge--Ampère equation admits a probabilistic interpretation, in terms of many particle limit of permanental point processes satisfying a large deviation principle with a rate function given explicitly using optimal transport. An alternative proof of a step in the Berman--Hultgren Theorem is presented allowing to to deal with all "tempratures" simultaneously instead of first reducing to the zero-temperature case.