论文标题

重新诠释变形的海森堡代数

Reinterpreting deformed Heisenberg algebras

论文作者

Wagner, Fabian

论文摘要

位置测量值的最小和最大不确定性被广泛认为是低能量量子和经典重力的可能标志。虽然一般相对论用空间曲率描述了相互作用,但其量子类似物也可以扩展到所建议的曲线动量空间的领域。 g。在变形特殊相对论中相对位置的背景下。利用较早的工作,我们在一个完全天生的倒数中展示了i。 e。位置和动量空间协变量,即可以用量子动力学来描述二次概括扩展不确定性原理的方式。在扩展的不确定性原理的情况下,位置空间中的曲率张量与Momenta的非交通量成正比,而类似关系则适用于动量空间中的曲率张量,而坐标的不交分性则适用于普遍不确定的不确定原理。在得出这张地图的过程中,该方法的协方差将可接受的模型限制为以前未曾研究过的非共同几何形状的有趣子类。此外,我们逆转了从一般背景几何形状中得出一般各向异性变形的不确定性关系的方法。例如,这种形式主义应用于(反) - 保姆时空。

Minimal and maximal uncertainties of position measurements are widely considered possible hallmarks of low-energy quantum as well as classical gravity. While General Relativity describes interactions in terms of spatial curvature, its quantum analogue may also extend to the realm of curved momentum space as suggested, e. g. in the context of Relative Locality in Deformed Special Relativity. Drawing on earlier work, we show in an entirely Born reciprocal, i. e. position and momentum space covariant, way that the quadratic Generalized Extended Uncertainty principle can alternatively be described in terms of quantum dynamics on a general curved cotangent manifold. In the case of the Extended Uncertainty Principle the curvature tensor in position space is proportional to the noncommutativity of the momenta, while an analogous relation applies to the curvature tensor in momentum space and the noncommutativity of the coordinates for the Generalized Uncertainty Principle. In the process of deriving this map, the covariance of the approach constrains the admissible models to an interesting subclass of noncommutative geometries which has not been studied before. Furthermore, we reverse the approach to derive general anisotropically deformed uncertainty relations from general background geometries. As an example, this formalism is applied to (anti)-de Sitter spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源