论文标题
石墨烯量子大厅边缘的量子蒙特卡洛
Quantum Monte Carlo at the Graphene Quantum Hall Edge
论文作者
论文摘要
我们通过无标志量子蒙特卡洛研究石墨烯和真空界面的连续模型,使我们能够研究大型系统尺寸的石墨烯量子厅边缘中拓扑相互作用和强烈的相互作用。我们专注于从旋转极化状态的拓扑相变,具有对称性的无间隙螺旋边缘到由Zeeman Energy驱动的,具有自发对称性破坏的完全损失的倾斜抗抗抗磁铁状态。我们的大型系统尺寸模拟使我们能够详细介绍该过渡中各种数量的行为,这些行为可被实验探测,例如状态的空间和能量分辨的局部密度和局部可压缩性。我们发现边缘色散分支中的特殊扭结,并且在大部分倾斜 - 抗铁磁铁模式相关的大量倾斜抗铁磁体中也出乎意料的大电荷敏感性。
We study a continuum model of the interface of graphene and vacuum in the quantum hall regime via sign-problem-free quantum Monte Carlo, allowing us to investigate the interplay of topology and strong interactions in a graphene quantum Hall edge for large system sizes. We focus on the topological phase transition from the spin polarized state with symmetry protected gapless helical edges to the fully charge gapped canted-antiferromagnet state with spontaneous symmetry breaking, driven by the Zeeman energy. Our large system size simulations allow us to detail the behaviour of various quantities across this transition that are amenable to be probed experimentally, such as the spatially and energy-resolved local density of states and the local compressibility. We find peculiar kinks in the branches of the edge dispersion, and also an unexpected large charge susceptibility in the bulk of the canted-antiferromagnet associated with its Goldstone mode.