论文标题
宇宙N体模拟的现场神经网络模拟器
Field Level Neural Network Emulator for Cosmological N-body Simulations
论文作者
论文摘要
我们为宇宙结构形成构建了一个场水平模拟器,该模拟器在非线性方案中是准确的。我们的仿真器由两个卷积神经网络组成,这些卷积神经网络训练有素,可以根据其线性输入输出N体模拟粒子的非线性位移和速度。宇宙学的依赖性是在神经网络的每个层的样式参数形式进行编码,从而使模拟器能够有效地插入了在广泛的背景问题上,不同扁平$λ$ CDM宇宙学之间结构形成的结果。神经网络体系结构使模型可通过构造来区分,从而为快速场水平推断提供了强大的工具。我们通过考虑几个摘要统计数据,包括带有和没有红移空间扭曲的密度功率谱,位移功率谱,动量功率谱,密度双光谱,光晕丰度以及带有红移空间的晕圈曲线,并没有红移。我们将模拟器中的这些统计数据与完整的N体结果,可乐方法和没有宇宙学依赖性的基准神经网络进行了比较。我们发现我们的仿真器将准确的结果降至$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $,代表了对COLA和基金神经网络的可观改进。我们还证明,我们的模拟器可以很好地概括到包含原始非高斯性的初始条件,而无需任何其他样式参数或再培训。
We build a field level emulator for cosmic structure formation that is accurate in the nonlinear regime. Our emulator consists of two convolutional neural networks trained to output the nonlinear displacements and velocities of N-body simulation particles based on their linear inputs. Cosmology dependence is encoded in the form of style parameters at each layer of the neural network, enabling the emulator to effectively interpolate the outcomes of structure formation between different flat $Λ$CDM cosmologies over a wide range of background matter densities. The neural network architecture makes the model differentiable by construction, providing a powerful tool for fast field level inference. We test the accuracy of our method by considering several summary statistics, including the density power spectrum with and without redshift space distortions, the displacement power spectrum, the momentum power spectrum, the density bispectrum, halo abundances, and halo profiles with and without redshift space distortions. We compare these statistics from our emulator with the full N-body results, the COLA method, and a fiducial neural network with no cosmological dependence. We find our emulator gives accurate results down to scales of $k \sim 1\ \mathrm{Mpc}^{-1}\, h$, representing a considerable improvement over both COLA and the fiducial neural network. We also demonstrate that our emulator generalizes well to initial conditions containing primordial non-Gaussianity, without the need for any additional style parameters or retraining.