论文标题
稳定性和某些$ \ mathbb {p}^n $ functors
Stability and certain $\mathbb{P}^n$-functors
论文作者
论文摘要
令$ x $为K3表面。我们证明,Addington的$ \ Mathbb {p}^n $ - functor $ x $的派生类别与点的希尔伯特方案$ x^{[k] $映射$ x $上的$ x $上的稳定矢量捆绑包至稳定的向量bundles to $ x^{[k]} $,鉴于某些数量的条件。
Let $X$ be a K3 surface. We prove that Addington's $\mathbb{P}^n$-functor between the derived categories of $X$ and the Hilbert scheme of points $X^{[k]}$ maps stable vector bundles on $X$ to stable vector bundles on $X^{[k]}$, given some numerical conditions are satisfied.