论文标题

使用深色和LightGBM的融合,将COVID-19在胸部X射线图像中分类

Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep Features and LightGBM

论文作者

Nasiri, Hamid, Kheyroddin, Ghazal, Dorrigiv, Morteza, Esmaeili, Mona, Nafchi, Amir Raeisi, Ghorbani, Mohsen Haji, Zarkesh-Ha, Payman

论文摘要

Covid-19疾病最初是在中国武汉发现的,并在全球迅速传播。在COVID-19大流行之后,许多研究人员开始使用胸部X射线图像来确定一种诊断Covid-19的方法。这种疾病的早期诊断会显着影响治疗过程。在本文中,我们提出了一种比文献中报道的其他方法更快,更准确的新技术。提出的方法结合了Densenet169和Mobilenet深神经网络的组合来提取患者X射线图像的特征。使用单变量特征选择算法,我们为最重要的功能完善了功能。然后,我们将选定的功能应用于LightGBM(轻梯度增强机)算法进行分类。为了评估所提出的方法的有效性,使用了包括患者胸部的1125张X射线图像的ChestX-Ray8数据集。提出的方法分别达到了两级(Covid-19,健康)和多级(Covid-19,健康,肺炎)分类问题的98.54%和91.11%的精度。值得一提的是,我们已经使用了梯度加权类激活映射(Grad-CAM)进行进一步分析。

The COVID-19 disease was first discovered in Wuhan, China, and spread quickly worldwide. After the COVID-19 pandemic, many researchers have begun to identify a way to diagnose the COVID-19 using chest X-ray images. The early diagnosis of this disease can significantly impact the treatment process. In this article, we propose a new technique that is faster and more accurate than the other methods reported in the literature. The proposed method uses a combination of DenseNet169 and MobileNet Deep Neural Networks to extract the features of the patient's X-ray images. Using the univariate feature selection algorithm, we refined the features for the most important ones. Then we applied the selected features as input to the LightGBM (Light Gradient Boosting Machine) algorithm for classification. To assess the effectiveness of the proposed method, the ChestX-ray8 dataset, which includes 1125 X-ray images of the patient's chest, was used. The proposed method achieved 98.54% and 91.11% accuracies in the two-class (COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification problems, respectively. It is worth mentioning that we have used Gradient-weighted Class Activation Mapping (Grad-CAM) for further analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源