论文标题

微观和纳米级材料断裂的尺寸效应

Size effects in micro and nanoscale materials fracture

论文作者

Taloni, Alessandro, Vodret, Michele, Costantini, Giulio, Zapperi, Stefano

论文摘要

微观和纳米级材料具有显着的机械性能,例如增强的强度和韧性,但通常显示样本到样本的波动和非平凡的尺寸效应,工程应用的滋扰以及科学的有趣问题。由于越来越多的实验测量,我们对基于碳的纳米材料(例如石墨烯碳纳米管)以及晶体和无定形微型/纳米木制和微小/纳米线的实验测量越来越多,我们对小规模材料中尺寸效应的理解已经取得了长足的发展。同时,增加的计算能力允许原子模拟达到实验相关的样本量。从理论的角度来看,实验和计算数据的标准分析和解释依赖于几十年前针对宏观样本开发的传统极值理论,最近的工作扩展了原始理论的一些限制假设。在这篇综述中,我们讨论了有关微观和纳米级断裂大小效应的最新实验和数值文献,并说明了指出其优势和局限性的现有理论,并最终提供了分析微观和纳米级样品裂缝数据的教程。我们讨论了广泛的材料,但同时提供了一个统一的理论框架,这对从事微观和纳米级机械的材料有帮助。

Micro and nanoscale materials have remarkable mechanical properties, such as enhanced strength and toughness, but usually display sample-to-sample fluctuations and non-trivial size effects, a nuisance for engineering applications and an intriguing problem for science. Our understanding of size-effects in small-scale materials has progressed considerably in the past few years thanks to a growing number of experimental measurements on carbon based nanomaterials, such as graphene carbon nanotubes, and on crystalline and amorphous micro/nanopillars and micro/nanowires. At the same time, increased computational power allowed atomistic simulations to reach experimentally relevant sample sizes. From the theoretical point of view, the standard analysis and interpretation of experimental and computational data relies on traditional extreme value theories developed decades ago for macroscopic samples, with recent work extending some of the limiting assumptions of the original theories. In this review, we discuss the recent experimental and numerical literature on micro and nanoscale fracture size effects, illustrate existing theories pointing out their advantages and limitations and finally provide a tutorial for analyzing fracture data from micro and nanoscale samples. We discuss a broad spectrum of materials but provide at the same time a unifying theoretical framework that should be helpful for materials scientists working on micro and nanoscale mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源