论文标题

桥接治疗比较:艾滋病毒治疗中的说明性应用

Bridged treatment comparisons: an illustrative application in HIV treatment

论文作者

Zivich, Paul N, Cole, Stephen R, Edwards, Jessie K, Shook-Sa, Bonnie E, Breskin, Alexander, Hudgens, Michael G

论文摘要

治疗,干预措施或暴露的比较是流行病学中的核心兴趣,但是由于实际或道德原因,直接比较并非总是可以进行的。在这里,我们详细介绍了一种融合方法来比较跨研究的治疗方法。使用AIDS临床试验组(ACTG)175(Mono versus vors dual Therapy)和ACTG 320(ACTG 320(Dual vers vers triple Terapy),分配了三重与单次抗逆转录病毒疗法时,艾滋病毒患者的死亡,艾滋病复合结果的风险或大于50%的CD4细胞计数下降的风险需要比较艾滋病毒患者的50%CD4细胞计数的风险。我们回顾了一组识别假设,并使用利用共享试验臂(双重治疗)的反概率加权估计器来估计风险差异。提出了基于比较共享臂的融合诊断,可能表明违反了识别假设。数据融合估计器和ACTG试验中的诊断量的应用表明,与基线CD4计数在50至300个细胞/mm $ $^3 $的个体中相比,三重治疗导致风险降低。桥接的治疗比较解决了任何组成数据源无法单独解决的问题,但是有效的基于融合的推理需要仔细考虑基础假设。

Comparisons of treatments, interventions, or exposures are of central interest in epidemiology, but direct comparisons are not always possible due to practical or ethical reasons. Here, we detail a fusion approach to compare treatments across studies. The motivating example entails comparing the risk of the composite outcome of death, AIDS, or greater than a 50% CD4 cell count decline in people with HIV when assigned triple versus mono antiretroviral therapy, using data from the AIDS Clinical Trial Group (ACTG) 175 (mono versus dual therapy) and ACTG 320 (dual versus triple therapy). We review a set of identification assumptions and estimate the risk difference using an inverse probability weighting estimator that leverages the shared trial arms (dual therapy). A fusion diagnostic based on comparing the shared arms is proposed that may indicate violation of the identification assumptions. Application of the data fusion estimator and diagnostic to the ACTG trials indicates triple therapy results in a reduction in risk compared to monotherapy in individuals with baseline CD4 counts between 50 and 300 cells/mm$^3$. Bridged treatment comparisons address questions that none of the constituent data sources could address alone, but valid fusion-based inference requires careful consideration of the underlying assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源