论文标题

无监督的总变化流程

Unsupervised Learning of the Total Variation Flow

论文作者

Grossmann, Tamara G., Dittmer, Sören, Korolev, Yury, Schönlieb, Carola-Bibiane

论文摘要

总变化(TV)流产生了基于电视功能的图像的比例空间表示。该梯度流观察图像的理想特征,例如锋利的边缘并实现光谱,比例和纹理分析。解决电视流程充满挑战;原因之一是亚级别的非唯一性。电视流的标准数值方法需要解决多个非平滑优化问题。即使采用最先进的凸优化技术,这通常也很昂贵,并且强烈激发了替代,更快的方法的使用。受到物理知识神经网络(PINN)框架的启发,我们提出了TVFlownet,一种无监督的神经网络方法,以近似给定初始图像和时间实例的电视流的解决方案。 TVFlownet不需要地面真实数据,而是利用PDE来优化网络参数。我们通过学习相关的扩散术语来避免与亚级别的非唯一性有关的挑战。我们的方法大大加快了计算时间的速度,我们表明TVFlownet近似于具有高保真度的电视流解决方案,以适应不同的图像尺寸和图像类型。此外,我们对不同的网络体系结构设计以及培训制度进行了完整的比较,以强调我们方法的有效性。

The total variation (TV) flow generates a scale-space representation of an image based on the TV functional. This gradient flow observes desirable features for images, such as sharp edges and enables spectral, scale, and texture analysis. Solving the TV flow is challenging; one reason is the the non-uniqueness of the subgradients. The standard numerical approach for TV flow requires solving multiple non-smooth optimisation problems. Even with state-of-the-art convex optimisation techniques, this is often prohibitively expensive and strongly motivates the use of alternative, faster approaches. Inspired by and extending the framework of physics-informed neural networks (PINNs), we propose the TVflowNET, an unsupervised neural network approach, to approximate the solution of the TV flow given an initial image and a time instance. The TVflowNET requires no ground truth data but rather makes use of the PDE for optimisation of the network parameters. We circumvent the challenges related to the non-uniqueness of the subgradients by additionally learning the related diffusivity term. Our approach significantly speeds up the computation time and we show that the TVflowNET approximates the TV flow solution with high fidelity for different image sizes and image types. Additionally, we give a full comparison of different network architecture designs as well as training regimes to underscore the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源