论文标题

深层替代辅助生成环境

Deep Surrogate Assisted Generation of Environments

论文作者

Bhatt, Varun, Tjanaka, Bryon, Fontaine, Matthew C., Nikolaidis, Stefanos

论文摘要

加强学习(RL)的最新进展已开始生产能够解决复杂环境分布的通常能力的代理。这些试剂通常在固定的,由人类作者的环境上进行测试。另一方面,质量多样性(QD)优化已被证明是环境生成算法的有效组成部分,该算法可以产生多样化的高质量环境的集合,这些环境在产生的代理行为中有所不同。但是,这些算法需要在新生成的环境上对代理的潜在昂贵模拟。我们提出了深层替代辅助生成环境(DSAGE),这是一种样本效率的QD环境生成算法,该算法保持了一个深层的替代模型,以预测新环境中的剂行为。导致两个基准域的结果表明,DSAGE在发现了引起最先进的RL代理和计划代理的环境中的集合中,大大优于现有的QD环境生成算法。我们的源代码和视频可从https://dsagepaper.github.io/获得。

Recent progress in reinforcement learning (RL) has started producing generally capable agents that can solve a distribution of complex environments. These agents are typically tested on fixed, human-authored environments. On the other hand, quality diversity (QD) optimization has been proven to be an effective component of environment generation algorithms, which can generate collections of high-quality environments that are diverse in the resulting agent behaviors. However, these algorithms require potentially expensive simulations of agents on newly generated environments. We propose Deep Surrogate Assisted Generation of Environments (DSAGE), a sample-efficient QD environment generation algorithm that maintains a deep surrogate model for predicting agent behaviors in new environments. Results in two benchmark domains show that DSAGE significantly outperforms existing QD environment generation algorithms in discovering collections of environments that elicit diverse behaviors of a state-of-the-art RL agent and a planning agent. Our source code and videos are available at https://dsagepaper.github.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源