论文标题
智能辅导系统中个性化反馈的几个问题生成
Few-shot Question Generation for Personalized Feedback in Intelligent Tutoring Systems
论文作者
论文摘要
在智能辅导系统中生成提示的现有工作(ITS)主要集中在手动和非个人反馈上。在这项工作中,我们探索自动产生的问题作为ITS中的个性化反馈。我们的个性化反馈可以在学生答案中查明正确,错误或缺失的短语,并通过提出自然语言问题来指导他们正确答案。我们的方法结合了基于文本相似性的NLP变压器模型来识别正确和不正确或缺失的零件,从而结合了因果分析,以分解学生答案。我们培训了一些弹药的神经问题生成和问题重新排列模型,以显示解决学生答案中缺少组件的问题,这些组件使学生朝着正确的答案迈进。在基于真实对话的ITS测试时,我们的模型在学生学习的增长方面大大优于简单和强大的基线。最后,我们表明我们个性化的纠正反馈系统有可能改善生成的问答系统。
Existing work on generating hints in Intelligent Tutoring Systems (ITS) focuses mostly on manual and non-personalized feedback. In this work, we explore automatically generated questions as personalized feedback in an ITS. Our personalized feedback can pinpoint correct and incorrect or missing phrases in student answers as well as guide them towards correct answer by asking a question in natural language. Our approach combines cause-effect analysis to break down student answers using text similarity-based NLP Transformer models to identify correct and incorrect or missing parts. We train a few-shot Neural Question Generation and Question Re-ranking models to show questions addressing components missing in the student answers which steers students towards the correct answer. Our model vastly outperforms both simple and strong baselines in terms of student learning gains by 45% and 23% respectively when tested in a real dialogue-based ITS. Finally, we show that our personalized corrective feedback system has the potential to improve Generative Question Answering systems.