论文标题

蛋白质骨架在3D中的扩散概率建模,以解决基序的问题

Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem

论文作者

Trippe, Brian L., Yim, Jason, Tischer, Doug, Baker, David, Broderick, Tamara, Barzilay, Regina, Jaakkola, Tommi

论文摘要

构造脚手架结构,该结构支持所需的基序,赋予蛋白质功能,显示出对疫苗和酶设计的希望。但是,解决这个主题交易问题的一般解决方案仍然开放。当前的脚手架设计的机器学习技术要么仅限于不切实际的小脚手架(长度20),要么难以生产多种不同的脚手架。我们建议通过E(3) - 等级图神经网络学习各种蛋白质主链结构的分布。我们开发SMCDIFF以有效地从给定基序中的该分布中采样脚手架;我们的算法是从大型限制中的扩散模型中首先从理论上保证有条件的样本。我们通过与Alphafold2预测的结构保持一致的方式来评估我们设计的骨干。我们表明我们的方法可以(1)最多80个残基的样品支架,以及(2)实现固定基序的结构多样的支架。

Construction of a scaffold structure that supports a desired motif, conferring protein function, shows promise for the design of vaccines and enzymes. But a general solution to this motif-scaffolding problem remains open. Current machine-learning techniques for scaffold design are either limited to unrealistically small scaffolds (up to length 20) or struggle to produce multiple diverse scaffolds. We propose to learn a distribution over diverse and longer protein backbone structures via an E(3)-equivariant graph neural network. We develop SMCDiff to efficiently sample scaffolds from this distribution conditioned on a given motif; our algorithm is the first to theoretically guarantee conditional samples from a diffusion model in the large-compute limit. We evaluate our designed backbones by how well they align with AlphaFold2-predicted structures. We show that our method can (1) sample scaffolds up to 80 residues and (2) achieve structurally diverse scaffolds for a fixed motif.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源