论文标题

Gaia缺失的径向速度:DR3的盲目预测

The missing radial velocities of Gaia: blind predictions for DR3

论文作者

Naik, Aneesh, Widmark, Axel

论文摘要

尽管盖亚(Gaia)在银河系中观察到了超过十亿颗恒星的相空间坐标,但在绝大多数情况下,它仅获得了六个坐标中的五个,而缺失的维度为径向(视线)速度。使用逼真的模拟数据集,我们表明贝叶斯神经网络高度能力将这些径向速度“学习”作为其他五个坐标的函数,从而填补了空白。对于给定的恒星,网络输出不仅是点预测,而且是包含恒星相空间分布的固有散射,网络输入上的观察不确定性以及我们对我们对恒星相位空间分布的无知的任何“认识论”的不确定性的完整后验分布。将此技术应用于真实的Gaia数据,我们生成并发布了1600万GAIA DR2/EDR3星的径向速度的后宽速度(25 km/s)目录,在6 <g <14.5的大小范围内。 Gaia DR3很快就会填补这些差距,这将有助于测试我们的盲目预测。因此,我们已发布的目录的主要用途是验证我们的方法,证明其未来在生成Gaia DR3缺少的径向速度的后代的更新后期使用。

While Gaia has observed the phase space coordinates of over a billion stars in the Galaxy, in the overwhelming majority of cases it has only obtained five of the six coordinates, the missing dimension being the radial (line-of-sight) velocity. Using a realistic mock dataset, we show that Bayesian neural networks are highly capable of 'learning' these radial velocities as a function of the other five coordinates, and thus filling in the gaps. For a given star, the network outputs are not merely point predictions, but full posterior distributions encompassing the intrinsic scatter of the stellar phase space distribution, the observational uncertainties on the network inputs, and any 'epistemic' uncertainty stemming from our ignorance about the stellar phase space distribution. Applying this technique to the real Gaia data, we generate and publish a catalogue of posteriors (median width: 25 km/s) for the radial velocities of 16 million Gaia DR2/EDR3 stars in the magnitude range 6<G<14.5. Many of these gaps will be filled in very soon by Gaia DR3, which will serve to test our blind predictions. Thus, the primary use of our published catalogue will be to validate our method, justifying its future use in generating an updated catalogue of posteriors for radial velocities missing from Gaia DR3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源