论文标题
关于[C/Fe]丰度的不一致以及各种恒星调查中碳增强金属恒星的分数
On the inconsistency of [C/Fe] abundances and the fractions of carbon-enhanced metal-poor stars among various stellar surveys
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Carbon-enhanced metal-poor (CEMP) stars are a unique resource for Galactic archaeology because they probe the properties of the First Stars, early chemical evolution and binary interactions at very low metallicity. Comparing the fractions and properties of CEMP stars in different Galactic environments can provide us with unique insights into the formation and evolution of the Milky Way halo and its building blocks. In this work, we investigate whether directly comparing fractions of CEMP stars from different literature samples of very metal-poor ([Fe/H] < -2.0) stars is valid. We compiled published CEMP fractions and samples of Galactic halo stars from the past 25 years, and find that they are not all consistent with each other. Focusing on giant stars, we find significant differences between various surveys when comparing their trends of [Fe/H] versus [C/Fe] and their distributions of CEMP stars. To test the role of the analysis pipelines for low-resolution spectroscopic samples, we re-analysed giant stars from various surveys with the SSPP and FERRE pipelines. We found systematic differences in [C/Fe] of ~0.1-0.4 dex, partly independent of degeneracies with the stellar atmospheric parameters. These systematics are likely due to the different pipeline approaches, different assumptions in the employed synthetic grids, and/or the comparison of different evolutionary phases. We conclude that current biases in (the analysis of) very metal-poor samples limit the conclusions one can draw from comparing different surveys. We provide some recommendations and suggestions that will hopefully aid the community to unlock the full potential of CEMP stars for Galactic archaeology.