论文标题

部分可观测时空混沌系统的无模型预测

Phonon-limited resistivity of multilayer graphene systems

论文作者

Davis, Seth M., Chou, Yang-Zhi, Wu, Fengcheng, Sarma, Sankar Das

论文摘要

我们计算了由于声音子在Bernal双层石墨烯(BBG)和Rhombohedral Trilayer石墨烯(RTG)中散射的电阻率对掺杂和温度($ t $)依赖性的理论贡献。我们专注于这些系统的详细,各向异性$ k \ cdot p $频段结构的非平凡几何特征的作用 - 例如Van Hove的奇异性,Lifshitz的过渡,费米表面各向异性和间隙附近的带曲率 - 尚未系统地研究其对运输的影响。我们发现这些几何特征强烈影响电阻率的温度和掺杂依赖性。特别是,乐队的几何形状导致了在高$ t $ Quientartition制度中的非线性$ t $依赖性,使通常的$ t^4 $到$ t $ t $ t $ bloch-groch-groch-grüneisen交叉。我们对BBG和RTG的关注是由这些系统的最新实验激发的,这些实验发现了几种异国情调的低$ t $超导率,即属于同种偏度相复杂的层次结构。这些相互作用驱动的相位与频带结构的几何特征密切相关,强调了理解带状几何影响传输影响的重要性。在解决各向异性带几何形状对散射时间的影响需要非平凡的数值解决方案时,我们的方法根植于直观的玻尔兹曼理论。我们将结果与最近的实验进行了比较,并讨论了如何使用我们的预测来阐明这些系统中各种散射机制的相对重要性。

We calculate the theoretical contribution to the doping and temperature ($T$) dependence of electrical resistivity due to scattering by acoustic phonons in Bernal bilayer graphene (BBG) and rhombohedral trilayer graphene (RTG). We focus on the role of nontrivial geometric features of the detailed, anisotropic $k\cdot p$ band structures of these systems - e.g. Van Hove singularities, Lifshitz transitions, Fermi surface anisotropy, and band curvature near the gap - whose effects on transport have not yet been systematically studied. We find that these geometric features strongly influence the temperature and doping dependencies of the resistivity. In particular, the band geometry leads to a nonlinear $T$-dependence in the high-$T$ equipartition regime, complicating the usual $T^4$ to $T$ Bloch-Grüneisen crossover. Our focus on BBG and RTG is motivated by recent experiments in these systems that have discovered several exotic low-$T$ superconductivity proximate to complicated hierarchies of isospin-polarized phases. These interaction-driven phases are intimately related to the geometric features of the band structures, highlighting the importance of understanding the influence of band geometry on transport. While resolving the effects of the anisotropic band geometry on the scattering times requires nontrivial numerical solution, our approach is rooted in intuitive Boltzmann theory. We compare our results with recent experiment and discuss how our predictions can be used to elucidate the relative importance of various scattering mechanisms in these systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源