论文标题

FEYNMAN-KAC时间集成功能理论:ITô与功能演算

Feynman-Kac theory of time-integrated functionals: Itô versus functional calculus

论文作者

Dieball, Cai, Godec, Aljaž

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The fluctuations of dynamical functionals such as the empirical density and current as well as heat, work and generalized currents in stochastic thermodynamics are usually studied within the Feynman-Kac tilting formalism, which in the Physics literature is typically derived by some form of Kramers-Moyal expansion, or in the Mathematical literature via the Cameron-Martin-Girsanov approach. Here we derive the Feynman-Kac theory for general additive dynamical functionals directly via Itô calculus and via functional calculus, where the latter result in fact appears to be new. Using Dyson series we then independently recapitulate recent results on steady-state (co)variances of general additive dynamical functionals derived recently in Dieball and Godec ({2022 \textit{Phys. Rev. Lett.}~\textbf{129} 140601}) and Dieball and Godec ({2022 \textit{Phys. Rev. Res.}~\textbf{4} 033243}). We hope for our work to put the different approaches to the statistics of dynamical functionals employed in the field on a common footing, and to illustrate more easily accessible ways to the tilting formalism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源