论文标题
图形的色边缘稳定性指数的紧密界限
Tight Bounds on the Chromatic Edge Stability Index of Graphs
论文作者
论文摘要
图$ g $的色边缘稳定索引$ \ mathrm {es} _ {χ'}(g)$是其删除的最小边数导致具有较小色度索引的图形。我们在$ \ mathrm {es} _ {χ'}(g)$上提供了最好的上限,就度量$δ(g)$的顶点数量(如果$ g $是2类),以及$δ(g)$和$Δ(g)$和$ {δ(g)-1 -1} $(如果$ g $ g $)的顶点的数量。如果$ g $是双方的,我们给出了$ \ mathrm {es} _ {χ'}(g)$的精确表达式,涉及匹配的最大尺寸,该子图由度数$Δ(g)$引起的子图引起的子图。最后,我们考虑一组尺寸$ \ mathrm {es} _ {χ'}(g)$的最小缓解集,其删除减少了色度索引,每个边缘都具有至少符合一个顶点的属性,至少符合$δ(g)-1 $;我们证明,对于$ g $的一些最低缓解套件,但不一定是每$ g $的最低减轻套件的情况。
The chromatic edge stability index $\mathrm{es}_{χ'}(G)$ of a graph $G$ is the minimum number of edges whose removal results in a graph with smaller chromatic index. We give best-possible upper bounds on $\mathrm{es}_{χ'}(G)$ in terms of the number of vertices of degree $Δ(G)$ (if $G$ is Class 2), and the numbers of vertices of degree $Δ(G)$ and ${Δ(G)-1}$ (if $G$ is Class 1). If $G$ is bipartite we give an exact expression for $\mathrm{es}_{χ'}(G)$ involving the maximum size of a matching in the subgraph induced by vertices of degree $Δ(G)$. Finally, we consider whether a minimum mitigating set, that is a set of size $\mathrm{es}_{χ'}(G)$ whose removal reduces the chromatic index, has the property that every edge meets a vertex of degree at least $Δ(G)-1$; we prove that this is true for some minimum mitigating set of $G$, but not necessarily for every minimum mitigating set of $G$.