论文标题

具有一般内核的非局部交通模型:单数极限,熵可受理性和收敛速度

Nonlocal traffic models with general kernels: singular limit, entropy admissibility, and convergence rate

论文作者

Colombo, Maria, Crippa, Gianluca, Marconi, Elio, Spinolo, Laura V.

论文摘要

非局部保护定律(签名功能是通量函数取决于通过用给定内核的卷积来取决于解决方案)广泛用于车辆交通建模。在这项工作中,我们讨论了奇特的局部限制,即非本地解决方案与通过用Dirac Delta替换卷积内核获得的保护定律的熵溶液的收敛。尽管最近的反示例排除了一般情况下的融合,在交通模型的特定框架(具有各向异性卷积内核)中,奇异极限是在刚性假设下建立的,即指数式内核(对于指数核的情况下)(在核心和其衍生产品之间需要进行代数的身份,或者在衍生产品之间进行公平的差异)或范围划定的。在这项工作中,我们根据对交通模型的应用以及卷积内核的凸性要求,在完全自然的假设下获得一般的收敛结果。然后,我们提供了限制和收敛率的熵的通用标准。我们还展示了一个反示例,表明凸度假设对于我们的主要紧凑型估计是必需的。

Nonlocal conservation laws (the signature feature being that the flux function depends on the solution through the convolution with a given kernel) are extensively used in the modeling of vehicular traffic. In this work we discuss the singular local limit, namely the convergence of the nonlocal solutions to the entropy admissible solution of the conservation law obtained by replacing the convolution kernel with a Dirac delta. Albeit recent counter-examples rule out convergence in the general case, in the specific framework of traffic models (with anisotropic convolution kernels) the singular limit has been established under rigid assumptions, i.e. in the case of the exponential kernel (which entails algebraic identities between the kernel and its derivatives) or under fairly restrictive requirements on the initial datum. In this work we obtain general convergence results under assumptions that are entirely natural in view of applications to traffic models, plus a convexity requirement on the convolution kernels. We then provide a general criterion for entropy admissibility of the limit and a convergence rate. We also exhibit a counter-example showing that the convexity assumption is necessary for our main compactness estimate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源