论文标题
指标$ f(r)$重力的夸克星
Charged quark stars in metric $f(R)$ gravity
论文作者
论文摘要
我们为指标$ f(r)$引力背景中带电的紧凑型恒星的静水平衡提供了修改的TOV方程。我们采用MIT袋型号EOS进行密集的物质,并假设电荷分布,其中电荷密度$ρ_{\ rm ch} $与标准能量密度$ρ$成正比。使用Starobinsky模型,我们探讨了$αr^2 $项的作用,其中$α$是一个自由常数,而RICCI标量的$ r $在RADIUS,MASS和总电荷等电荷恒星的全球属性上。我们介绍了恒星对$α$的几个值的依赖性,以及对于常数参数$β\equivρ_{\ rm ch}/ρ$的不同值的不同值。值得注意的是,我们发现半径相对于低中央密度的GR值降低,而相反的情况发生在高中心密度区域。在表面测得的质量始终减小,随着参数$α$的增加,最大量的电荷会大大增加。我们还说明了由于电荷和额外的二次项而导致的渐近质量的变化。
We provide the modified TOV equations for the hydrostatic equilibrium of charged compact stars within the metric $f(R)$ gravitational background. We adopt the MIT bag model EoS for the dense matter and assume a charge distribution where the electric charge density $ρ_{\rm ch}$ is proportional to the standard energy density $ρ$. Using the Starobinsky model, we explore the role of the $αR^2$ term, where $α$ is a free constant and $R$ the Ricci scalar, on the global properties of charged stars such as radius, mass and total charge. We present the dependence of the structure of the star for several values of $α$ and for different values of the constant parameter $β\equiv ρ_{\rm ch}/ρ$. Remarkably, we find that the radius decreases with respect to its GR value for low central densities, while the opposite occurs in the high-central-density region. The mass measured at the surface always decreases and the maximum-total charge undergoes a substantial increase as the parameter $α$ increases. We also illustrate the variations of the asymptotic mass as a consequence of the electric charge and the extra quadratic term.