论文标题

纠缠相对论中的动作量

Quantum of action in entangled relativity

论文作者

Minazzoli, Olivier

论文摘要

在本文中,我们证明了称为“纠缠相对性”的新型相对论在通用尺寸常数和单位方面,当两种理论都通过路径积分表述考虑时,比一般相对性更经济。纠缠相对性的唯一参数是一个量子平方。但是,为了在路径积分中忽略重力时恢复标准量子场理论,我们表明这种量子的能量对应于降低的普朗克能量。但是,这个结果也意味着普朗克的动作量$ \ hbar $和牛顿的常数$ g $在此框架中不是固定的常数,而是与引力标量表的自由度成正比,类似于典型的标量张量和$ f(r)$。特别是,在此框架中,$ \ hbar $与$ g $成正比。这建立了量子和重力领域之间的明确联系。鉴于理论中没有任何免费的理论参数,我们评估了太阳系和中子星的$ \ hbar $和$ g $的变化水平。我们认为,尽管它们的幅度非常小,但将来可能会观察到这种定量预测。

In this article, we demonstrate that the novel general theory of relativity named `Entangled Relativity' is more economical than General Relativity in terms of universal dimensionful constants and units when both theories are considered through a path integral formulation. The sole parameter of Entangled Relativity is a quantum of energy squared. However, in order to recover standard Quantum Field Theory when gravity is neglected in the path integral, we show that this quantum of energy corresponds to the reduced Planck energy. But this result also implies that Planck's quantum of action $\hbar$ and Newton's constant $G$ are not fixed constants in this framework but vary proportionally to a gravitational scalar degree-of-freedom, akin to typical scalar-tensor and $f(R)$ theories. In particular, it is derived that $\hbar$ is proportional to $G$ in this framework. This establishes an explicit connection between the quantum and gravitational realms. Given the absence of any free theoretical parameter in the theory, we evaluate the level of variation of $\hbar$ and $G$ in the solar system and for neutron stars. We argue that this type of quantitative predictions might be probed observationally in the future, although their amplitudes are extremely small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源