论文标题

随机赫斯特指数的分数布朗运动:加速扩散和持续过渡

Fractional Brownian motion with random Hurst exponent: accelerating diffusion and persistence transitions

论文作者

Balcerek, Michał, Burnecki, Krzysztof, Thapa, Samudrajit, Wyłomańska, Agnieszka, Chechkin, Aleksei

论文摘要

分数布朗运动是一种具有固定的长期相关增量的高斯非马克维亚自相似过程,已被鉴定出可引起各种物理系统中异常的扩散行为。这种随机运动的相关性和扩散属性完全以其自相似性或Hurst指数的指数为特征。然而,最近在生物细胞中的单个粒子跟踪实验揭示了高度复杂的异常扩散现象,这不能归因于一类自相似的随机过程。受这些观察的启发,我们在这里研究了在单个轨迹水平上保留分数布朗运动特性的过程,但是,赫斯特指数从轨迹随机变为轨迹变为轨迹。我们提供了一个一般的数学框架,用于与随机Hurst指数的分数布朗运动的分析,数值和统计分析。概率密度函数,均方根位移和增量的自相关功能的显式公式用于Hurst指数的三个通用分布,即两点,均匀和β分布。这里研究的过程的重要特征是加速扩散和持久性转变,我们在分析和数值上证明。

Fractional Brownian motion, a Gaussian non-Markovian self-similar process with stationary long-correlated increments, has been identified to give rise to the anomalous diffusion behavior in a great variety of physical systems. The correlation and diffusion properties of this random motion are fully characterized by its index of self-similarity, or the Hurst exponent. However, recent single particle tracking experiments in biological cells revealed highly complicated anomalous diffusion phenomena that can not be attributed to a class of self-similar random processes. Inspired by these observations, we here study the process which preserves the properties of fractional Brownian motion at a single trajectory level, however, the Hurst index randomly changes from trajectory to trajectory. We provide a general mathematical framework for analytical, numerical and statistical analysis of fractional Brownian motion with random Hurst exponent. The explicit formulas for probability density function, mean square displacement and autocovariance function of the increments are presented for three generic distributions of the Hurst exponent, namely two-point, uniform and beta distributions. The important features of the process studied here are accelerating diffusion and persistence transition which we demonstrate analytically and numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源