论文标题
混合时间尺度的深度解释,用于联合通道估计和混合边界
Mixed-Timescale Deep-Unfolding for Joint Channel Estimation and Hybrid Beamforming
论文作者
论文摘要
在大量的多输入多输出(MIMO)系统中,杂交模拟数字波束形成是利用潜在阵列增益而无需为每个天线使用专用的射频链的必不可少的技术。但是,由于天线数量大量,常规的通道估计和杂交波束成形算法通常需要高计算复杂性和信号传导开销。在这项工作中,我们提出了一个端到端的深层神经网络(NN)联合通道估计和混合波束成形(JCEHB)算法,以最大程度地提高时间分割双工(TDD)的系统总和率。具体而言,递归最小二乘(RLS)算法和随机连续的凸近似(SSCA)算法分别进行了用于通道估计和混合波束成形的算法。为了减少信号传导开销,我们考虑了一个混合尺度的混合边界成形方案,在该方案中,基于频道状态信息(CSI)统计量进行了模拟光束矩阵,而在每个时间插槽中设计了基于估计的低维等效csi csi矩阵的时间插槽,而数字波束成型的矩阵进行了设计。我们将基于CSI统计量离线的RLS和SSCA的可训练参数共同训练模拟波束形式。在数据传输过程中,我们估计RLS诱导的深度折叠NN的低维当量CSI并更新了数字波束形式。此外,我们提出了一个混合时间尺度的深度折叠式NN,在线对模拟光束器进行了优化,并将框架扩展到频划分的双工(FDD)系统,并考虑了频道反馈。仿真结果表明,所提出的算法可以显着胜过传统算法,而计算复杂性和信号传导开销降低。
In massive multiple-input multiple-output (MIMO) systems, hybrid analog-digital beamforming is an essential technique for exploiting the potential array gain without using a dedicated radio frequency chain for each antenna. However, due to the large number of antennas, the conventional channel estimation and hybrid beamforming algorithms generally require high computational complexity and signaling overhead. In this work, we propose an end-to-end deep-unfolding neural network (NN) joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the system sum rate in time-division duplex (TDD) massive MIMO. Specifically, the recursive least-squares (RLS) algorithm and stochastic successive convex approximation (SSCA) algorithm are unfolded for channel estimation and hybrid beamforming, respectively. In order to reduce the signaling overhead, we consider a mixed-timescale hybrid beamforming scheme, where the analog beamforming matrices are optimized based on the channel state information (CSI) statistics offline, while the digital beamforming matrices are designed at each time slot based on the estimated low-dimensional equivalent CSI matrices. We jointly train the analog beamformers together with the trainable parameters of the RLS and SSCA induced deep-unfolding NNs based on the CSI statistics offline. During data transmission, we estimate the low-dimensional equivalent CSI by the RLS induced deep-unfolding NN and update the digital beamformers. In addition, we propose a mixed-timescale deep-unfolding NN where the analog beamformers are optimized online, and extend the framework to frequency-division duplex (FDD) systems where channel feedback is considered. Simulation results show that the proposed algorithm can significantly outperform conventional algorithms with reduced computational complexity and signaling overhead.