论文标题
通过变压器通过多代理增强学习在功率分配网络中稳定电压
Stabilizing Voltage in Power Distribution Networks via Multi-Agent Reinforcement Learning with Transformer
论文作者
论文摘要
可再生能源的整合增加为电源分销网络的运行带来了许多技术挑战。其中,由可再生能源的不稳定性引起的电压波动正在受到越来越多的关注。最近在主动电压控制任务中广泛研究了电网中的多个控制单元(能够处理电源系统快速变化)中的多个控制单元。但是,基于MARL的现有方法忽略了网格的独特性质,并实现有限的性能。在本文中,我们介绍了变压器体系结构,以提取适应电力网络问题的表示形式,并提出一个基于变压器的多代理参与者 - 批判框架(T-MAAC),以稳定电源分配网络中的电压。此外,我们采用了针对电压控制任务量身定制的新型辅助任务训练过程,从而提高了样品效率并促进基于变压器模型的表示。我们将T-MAAC与不同的多代理参与者 - 批判算法相结合,而主动电压控制任务的一致改进证明了该方法的有效性。
The increased integration of renewable energy poses a slew of technical challenges for the operation of power distribution networks. Among them, voltage fluctuations caused by the instability of renewable energy are receiving increasing attention. Utilizing MARL algorithms to coordinate multiple control units in the grid, which is able to handle rapid changes of power systems, has been widely studied in active voltage control task recently. However, existing approaches based on MARL ignore the unique nature of the grid and achieve limited performance. In this paper, we introduce the transformer architecture to extract representations adapting to power network problems and propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks. In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency and facilitating the representation learning of the transformer-based model. We couple T-MAAC with different multi-agent actor-critic algorithms, and the consistent improvements on the active voltage control task demonstrate the effectiveness of the proposed method.