论文标题

带有多个知识图的模块化转移学习,用于零射常识性推理

Modularized Transfer Learning with Multiple Knowledge Graphs for Zero-shot Commonsense Reasoning

论文作者

Kim, Yu Jin, Kwak, Beong-woo, Kim, Youngwook, Amplayo, Reinald Kim, Hwang, Seung-won, Yeo, Jinyoung

论文摘要

常识性推理系统应该能够推广到各种推理案例。但是,大多数最先进的方法取决于昂贵的数据注释,并且在不学习如何执行一般语义推理的情况下过度拟合特定的基准。为了克服这些缺点,零射击质量检查系统通过将常识性知识图(kg)转换为合成质量质量质量质量验证样本以进行模型训练,已将有望作为强大的学习方案显示出来。考虑到不断增加的不同常识性kg类型,本文旨在将零拍传输的学习方案扩展到多种源设置,在这种设置中,可以协同使用不同的kg。为了实现这一目标,我们建议通过将知识聚合的模块化变体作为一个新的零弹性常识性推理框架来减轻不同知识源之间的干扰丧失。五个常识性推理基准的结果证明了我们框架的功效,从而改善了多个公斤的性能。

Commonsense reasoning systems should be able to generalize to diverse reasoning cases. However, most state-of-the-art approaches depend on expensive data annotations and overfit to a specific benchmark without learning how to perform general semantic reasoning. To overcome these drawbacks, zero-shot QA systems have shown promise as a robust learning scheme by transforming a commonsense knowledge graph (KG) into synthetic QA-form samples for model training. Considering the increasing type of different commonsense KGs, this paper aims to extend the zero-shot transfer learning scenario into multiple-source settings, where different KGs can be utilized synergetically. Towards this goal, we propose to mitigate the loss of knowledge from the interference among the different knowledge sources, by developing a modular variant of the knowledge aggregation as a new zero-shot commonsense reasoning framework. Results on five commonsense reasoning benchmarks demonstrate the efficacy of our framework, improving the performance with multiple KGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源