论文标题

我们学到什么?揭穿无监督的离群检测神话

What do we learn? Debunking the Myth of Unsupervised Outlier Detection

论文作者

Bercea, Cosmin I., Rueckert, Daniel, Schnabel, Julia A.

论文摘要

即使自动编码器(AES)具有无标签的学习紧凑表示的理想特性,并且已广泛应用于分布式(OOD)检测,但它们通常仍然对它们的理解很差,并且在检测正常分布和正常分布的异常值中被错误地使用。通常,假定学习的歧管包含关键信息,这对于描述训练分布中的样本很重要,并且离群值的重建导致较高的残余错误。但是,最近的工作表明,AE在重建某些类型的OOD样本方面可能会更好。在这项工作中,我们挑战了这一假设,并研究了自动编码器在提出两个不同任务时实际学习的内容。首先,我们提出了两个基于Fréchet成立距离(FID)的指标和受过训练的分类器的置信度得分,以评估AES是否可以学习训练分布并可靠地识别其他领域的样本。其次,我们研究了AE是否能够在更具挑战性的肺病理检测任务上合成来自具有异常区域样本的正常图像。我们发现,最新的(SOTA)AES要么无法限制潜在的多种流形并允许重建异常模式,要么无法准确地从其潜伏分布中恢复输入,从而导致模糊或误解的重建。我们提出了新型的可变形自动编码器(morphaeus),以学习感知的全球图像先验,并根据估计的致密变形场局部适应其形态计量法。我们在检测OOD和病理学方面表现出优于无监督方法的卓越性能。

Even though auto-encoders (AEs) have the desirable property of learning compact representations without labels and have been widely applied to out-of-distribution (OoD) detection, they are generally still poorly understood and are used incorrectly in detecting outliers where the normal and abnormal distributions are strongly overlapping. In general, the learned manifold is assumed to contain key information that is only important for describing samples within the training distribution, and that the reconstruction of outliers leads to high residual errors. However, recent work suggests that AEs are likely to be even better at reconstructing some types of OoD samples. In this work, we challenge this assumption and investigate what auto-encoders actually learn when they are posed to solve two different tasks. First, we propose two metrics based on the Fréchet inception distance (FID) and confidence scores of a trained classifier to assess whether AEs can learn the training distribution and reliably recognize samples from other domains. Second, we investigate whether AEs are able to synthesize normal images from samples with abnormal regions, on a more challenging lung pathology detection task. We have found that state-of-the-art (SOTA) AEs are either unable to constrain the latent manifold and allow reconstruction of abnormal patterns, or they are failing to accurately restore the inputs from their latent distribution, resulting in blurred or misaligned reconstructions. We propose novel deformable auto-encoders (MorphAEus) to learn perceptually aware global image priors and locally adapt their morphometry based on estimated dense deformation fields. We demonstrate superior performance over unsupervised methods in detecting OoD and pathology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源