论文标题
朝着对现实世界分配变化的认证鲁棒性
Toward Certified Robustness Against Real-World Distribution Shifts
论文作者
论文摘要
我们考虑了证明深神经网络对现实分布变化的鲁棒性的问题。为此,我们通过提出一个新型的神经符号验证框架来弥合手工制作的规范和现实部署设置之间的差距,在该框架中,我们在该框架中训练一个生成模型以从数据中学习扰动并根据学习模型的输出来定义规格。这种设置引起的一个独特的挑战是,现有的验证者不能紧密地近似sigmoid激活,这对于许多最新的生成模型至关重要。为了应对这一挑战,我们提出了一个通用的元算象来处理乙状结肠激活,该乙状结激素利用反示例引导的抽象细化的经典概念。关键思想是“懒惰地”完善Sigmoid函数的抽象,以排除先前抽象中发现的虚假反示例,从而确保验证过程中的进展,同时保持状态空间较小。 MNIST和CIFAR-10数据集的实验表明,我们的框架在一系列具有挑战性的分配变化方面大大优于现有方法。
We consider the problem of certifying the robustness of deep neural networks against real-world distribution shifts. To do so, we bridge the gap between hand-crafted specifications and realistic deployment settings by proposing a novel neural-symbolic verification framework, in which we train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model. A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations, which are fundamental to many state-of-the-art generative models. To address this challenge, we propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement. The key idea is to "lazily" refine the abstraction of sigmoid functions to exclude spurious counter-examples found in the previous abstraction, thus guaranteeing progress in the verification process while keeping the state-space small. Experiments on the MNIST and CIFAR-10 datasets show that our framework significantly outperforms existing methods on a range of challenging distribution shifts.