论文标题
Nasicon类型Na $ _3 $ zr $ _2 $ si $ _2 $ po $ _ {12} $的介电属性和阻抗光谱
Dielectric properties and impedance spectroscopy of NASICON type Na$_3$Zr$_2$Si$_2$PO$_{12}$
论文作者
论文摘要
我们报告了NA $ _3 $ _3 $ ZR $ _2 $ si $ _2 $ po $ _ {12} $的温度依赖性介电属性和阻抗光谱调查。 X射线衍射模式的Rietveld细化证实了C2/C空间组的单斜相。 {\ it d.c.}电阻率行为在低温下显示了其强大的绝缘性质,并以0.68 eV的激活能遵循Arrhenius热传导定律。根据空间极化机制来解释用频率的电介电常数($ε_r$)的减小,并通过电荷载体的热激活而随温度的增量来解释。介电损耗(d = tan $δ$)峰遵循Arrhenius热激活定律,能量为0.25 eV。我们观察到{\ it A.C.}电导率的增强,由于激活能的降低,频率和温度有所增强,从而增强了缺陷状态之间的传导。此外,我们观察到{\ it A.C.}电导率的突然增加,该电导率是使用通用的Jonschers Power Law解释的。 {\ it A.C.}电导率的分析显示了两种类型的传导机制,即在测得的温度范围内相关的屏障跳和非重叠的小极性隧穿。电气模量的假想部分证实了样品中的非偏离型弛豫。随着温度的升高,松弛峰向更高的频率侧的峰值确保了其热激活的性质。电气模量的缩放行为在测得的温度范围内显示出相似的松弛类型。电气模量和阻抗与频率的组合分析显示了电荷载体的短距离迁移率。
We report the temperature dependent dielectric properties and impedance spectroscopy investigation of Na$_3$Zr$_2$Si$_2$PO$_{12}$ in the frequency range of 20 Hz--2 MHz. The Rietveld refinement of x-ray diffraction pattern confirms the monoclinic phase with C2/c space group. The {\it d.c.} resistivity behavior shows its strong insulating nature at low temperatures, and follows Arrhenius law of thermal conduction with an activation energy of 0.68 eV. The decrease in electric permittivity ($ε_r$) with frequency is explained based on the space polarization mechanism and its increment with temperature by thermal activation of charge carriers. The dielectric loss (D=tan$δ$) peak follows the Arrhenius law of thermal activation with an energy of 0.25 eV. We observe an enhancement in {\it a.c.} conductivity with frequency and temperature due to the decrease in the activation energy, which results in enhancing the conduction between defect states. Further, we observe an abrupt increase in the {\it a.c.} conductivity at high frequencies, which is explained using the universal Jonschers power law. The analysis of {\it a.c.} conductivity shows two types of conduction mechanisms namely correlated barrier hopping and non-overlapping small polaron tunnelling in the measured temperature range. The imaginary part of the electric modulus confirms the non-Debye type relaxation in the sample. The shifting of the relaxation peak towards higher frequency side with an increase in temperature ensures its thermally activated nature. The scaling behavior of the electric modulus shows similar type of relaxation over the measured temperature range. The combined analysis of electric modulus and impedance with frequency shows the short-range mobility of charge carriers.