论文标题
TrackIntel:人类流动分析的开源Python图书馆
Trackintel: An open-source Python library for human mobility analysis
论文作者
论文摘要
在过去的十年中,科学研究利用大型跟踪数据集的可用性增强了我们对人类流动行为的理解。但是,到目前为止,不同数据收集方法的数据处理管道尚未标准化,因此限制了方法的可重复性,可比性和可传递性,并在定量的人类迁移率分析中产生。本文介绍了TrackIntel,这是一个用于人类移动性分析的开源Python库。 TrackIntel建立在用于运输计划中的人类移动性的标准数据模型上,该模型与不同类型的跟踪数据兼容。我们介绍了库的主要功能,该功能涵盖了人类流动性分析的完整生命周期,包括根据概念数据模型的处理步骤,读取和写入界面以及分析功能(例如,数据质量评估,旅行模式预测和位置标签)。我们通过带有四个不同跟踪数据集的案例研究来展示TrackIntel库的有效性。 TrackIntel可以作为标准化移动性数据分析并提高新型人类活动研究的透明度和可比性的必要工具。
Over the past decade, scientific studies have used the growing availability of large tracking datasets to enhance our understanding of human mobility behavior. However, so far data processing pipelines for the varying data collection methods are not standardized and consequently limit the reproducibility, comparability, and transferability of methods and results in quantitative human mobility analysis. This paper presents Trackintel, an open-source Python library for human mobility analysis. Trackintel is built on a standard data model for human mobility used in transport planning that is compatible with different types of tracking data. We introduce the main functionalities of the library that covers the full life-cycle of human mobility analysis, including processing steps according to the conceptual data model, read and write interfaces, as well as analysis functions (e.g., data quality assessment, travel mode prediction, and location labeling). We showcase the effectiveness of the Trackintel library through a case study with four different tracking datasets. Trackintel can serve as an essential tool to standardize mobility data analysis and increase the transparency and comparability of novel research on human mobility.