论文标题

理解社会动态的两种方式:分析物体在reddit r/lace中的出现的可预测性,取决于时空中的位置

Two Ways of Understanding Social Dynamics: Analyzing the Predictability of Emergence of Objects in Reddit r/place Dependent on Locality in Space and Time

论文作者

Adams, Alyssa M, Fernandez, Javier, Witkowski, Olaf

论文摘要

最近,研究相互作用的代理中的社会动态已经通过计算机模型的力量提高,这些功能带来了定性工作的丰富性,同时提供了统计和数学方法的精确性,透明度,扩展性和可复制性。网络协作平台是一组特定的现象进行社会动态研究。 R/Place是一个感兴趣的数据集,这是2017年在Reddit上举行的协作社交实验,该实验包括1000个像素的共享在线画布,比1000个像素在72个小时内共同编辑了1000个像素。在本文中,我们设计并比较了两种分析该实验动力学的方法。我们的第一种方法包括近似于用于生成画布图像以及这些规则如何随着时间变化的2D蜂窝形象样规则。第二种方法由卷积神经网络(CNN)组成,该卷积神经网络(CNN)学会了与生成规则的近似,以生成画布的复杂结果。我们的结果表明上下文大小的依赖性不同,可以在时间和空间上r/r/place中不同对象的可预测性。它们还表明,在统计上将行为规则推断为社会实验中间的难度令人惊讶的高峰,而直到结束之前,用户互动才下降。我们两种基于规则的方法和另一种基于统计的CNN的方法的组合表明了强调分析社会动态各种方面的能力。

Lately, studying social dynamics in interacting agents has been boosted by the power of computer models, which bring the richness of qualitative work, while offering the precision, transparency, extensiveness, and replicability of statistical and mathematical approaches. A particular set of phenomena for the study of social dynamics is Web collaborative platforms. A dataset of interest is r/place, a collaborative social experiment held in 2017 on Reddit, which consisted of a shared online canvas of 1000 pixels by 1000 pixels co-edited by over a million recorded users over 72 hours. In this paper, we designed and compared two methods to analyze the dynamics of this experiment. Our first method consisted in approximating the set of 2D cellular-automata-like rules used to generate the canvas images and how these rules change over time. The second method consisted in a convolutional neural network (CNN) that learned an approximation to the generative rules in order to generate the complex outcomes of the canvas. Our results indicate varying context-size dependencies for the predictability of different objects in r/place in time and space. They also indicate a surprising peak in difficulty to statistically infer behavioral rules towards the middle of the social experiment, while user interactions did not drop until before the end. The combination of our two approaches, one rule-based and the other statistical CNN-based, shows the ability to highlight diverse aspects of analyzing social dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源