论文标题
在拉士上部分双曲线随机动态
Partially hyperbolic random dynamics on Grassmannians
论文作者
论文摘要
一系列可逆矩阵,由固定的对角线围绕部分双曲线基质绕的小随机扰动给出,可诱导格拉斯曼歧管上的随机动力学。在合适的弱条件下,众所周知,它具有独特的不变(Furstenberg)度量。主要结果给出了此措施的浓度界限,表明随机动力学的概率很高,在不受干扰的矩阵的稳定固定点附近停留,而随机扰动的强度主导着对角色基质的局部高光质性。作为应用程序,获得Lyapunov指数总和的界限。
A sequence of invertible matrices given by a small random perturbation around a fixed diagonal partially hyperbolic matrix induces a random dynamics on the Grassmann manifolds. Under suitable weak conditions it is known to have a unique invariant (Furstenberg) measure. The main result gives concentration bounds on this measure showing that with high probability the random dynamics stays in the vicinity of stable fixed points of the unperturbed matrix, in a regime where the strength of the random perturbation dominates the local hyperbolicity of the diagonal matrix. As an application, bounds on sums of Lyapunov exponents are obtained.