论文标题

基于深度学习的直接分割,辅助由可变形的图像配准,用于基于锥束CT的自适应放射疗法的自动分割

Deep Learning based Direct Segmentation Assisted by Deformable Image Registration for Cone-Beam CT based Auto-Segmentation for Adaptive Radiotherapy

论文作者

Liang, Xiao, Morgan, Howard, Bai, Ti, Dohopolski, Michael, Nguyen, Dan, Jiang, Steve

论文摘要

基于锥束CT(CBCT)基于在线自适应放射疗法要求准确的自动分割,以减少医生编辑轮廓的时间成本。但是,基于深度学习(DL)的直接分割CBCT图像是一项具有挑战性的任务,这主要是由于图像质量差和缺乏标记良好的大型培训数据集。可变形的图像注册(DIR)通常用于传播同一患者的计划CT(PCT)到CBCT上的手动轮廓。在这项工作中,我们将在DIR的协助下解决上述问题。我们的方法由三个主要组成部分组成。首先,我们使用从PCT和CBCT之间的多种DIR方法得出的变形PCT轮廓作为伪标记,以基于DL的直接分割模型的初始训练。其次,我们将来自另一种DIR算法的变形PCT轮廓用作影响器量来定义基于DL的直接分割的关注区域。第三,最初训练的DL模型使用较小的真实标签进行了微调。我们发现,与基于DIR的分割相比,使用伪标签的CBCT上的基于DL的直接分割表现出较差的性能。但是,将变形的PCT轮廓添加为直接分割网络中的有影响力的体积可显着提高分割性能,从而达到基于DIR的细分的精度水平。使用较小的真实标签进行微调,可以通过微调进一步改善带有影响器量的DL模型。实验表明,与基于DIR的分割相比,19个结构中有7个至少具有0.2个骰子相似性系数。可以通过使用变形的PCT轮廓作为伪标签和有影响力的体积来提高基于DL的直接CBCT分割模型,以优于基于DIR的分割模型,以进行初始训练,并使用较小的TRUE标签进行模型微调。

Cone-beam CT (CBCT)-based online adaptive radiotherapy calls for accurate auto-segmentation to reduce the time cost for physicians to edit contours. However, deep learning (DL)-based direct segmentation of CBCT images is a challenging task, mainly due to the poor image quality and lack of well-labelled large training datasets. Deformable image registration (DIR) is often used to propagate the manual contours on the planning CT (pCT) of the same patient to CBCT. In this work, we undertake solving the problems mentioned above with the assistance of DIR. Our method consists of three main components. First, we use deformed pCT contours derived from multiple DIR methods between pCT and CBCT as pseudo labels for initial training of the DL-based direct segmentation model. Second, we use deformed pCT contours from another DIR algorithm as influencer volumes to define the region of interest for DL-based direct segmentation. Third, the initially trained DL model is further fine-tuned using a smaller set of true labels. We found that DL-based direct segmentation on CBCT trained with pseudo labels and without influencer volumes shows poor performance compared to DIR-based segmentation. However, adding deformed pCT contours as influencer volumes in the direct segmentation network dramatically improves segmentation performance, reaching the accuracy level of DIR-based segmentation. The DL model with influencer volumes can be further improved through fine-tuning using a smaller set of true labels. Experiments showed that 7 out of 19 structures have an at least 0.2 Dice similarity coefficient increase compared to DIR-based segmentation. A DL-based direct CBCT segmentation model can be improved to outperform DIR-based segmentation models by using deformed pCT contours as pseudo labels and influencer volumes for initial training, and by using a smaller set of true labels for model fine tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源