论文标题
CO3SN2S2和FE3Gete2磁性拓扑半学的一阶反转曲线的表面自旋结构的证据
Evidence for surface spin structures from first order reversal curves in Co3Sn2S2 and Fe3GeTe2 magnetic topological semimetals
论文作者
论文摘要
我们研究了两个不同的磁性拓扑半学分CO3SN2S2和FE3Gete2的磁化反转和一阶反转曲线。对于磁化逆转,我们观察到初始(低温)台阶状磁化切换的强度依赖性,因此倒置滞后出现在高温下。通常,反转滞后是具有两个独立磁相的材料的指纹,反转反映了相互作用。一阶逆向曲线分析即使在实验的最低温度下也证实了两相行为。虽然大量铁磁磁化表现出强烈的温度依赖性,但观察到的相位显示出低于居里温度的完美稳定性。获得的磁滞回路是弓形领带类型,通常归因于Skyrmionic相的外观。所述的两相行为对于CO3SN2S2和FE3Gete2磁性拓扑半学大多相同,只有这些材料的特征温度有所不同。我们实验的细节是第二阶段的出色温度稳定性,而通常在Curie温度附近观察到天空。另一方面,由于拓扑半学对表面状态的拓扑保护,表面态诱导的自旋纹理可以预期温度稳定性。这也解释了两个不同拓扑半学CO3SN2S2和FGT的第二阶段的普遍行为。这两种材料具有强大的体积特性,唯一的相似性是拓扑表面状态的存在。因此,我们可以将第二,温度稳定的磁相归因于拓扑半学的表面状态。
We study magnetization reversal and first order reversal curves for two different magnetic topological semimetals, Co3Sn2S2 and Fe3GeTe2, in a wide temperature range. For the magnetization reversal, we observe strong temperature dependence of the initial (low-temperature) step-like magnetization switchings, so the inverted hysteresis appears at high temperatures. Usually, the inverted hysteresis is a fingerprint of material with two independent magnetic phases, the inversion reflects the phase interaction. First order reversal curve analysis confirms the two-phase behavior even at the lowest temperatures of the experiment. While the bulk ferromagnetic magnetization shows strong temperature dependence, one of the observed phases demonstrates perfect stability below the Curie temperature. The obtained hysteresis loops are of the bow-tie type, which is usually ascribed to appearance of the skyrmionic phase. The described two-phase behavior is mostly identical for Co3Sn2S2 and Fe3GeTe2 magnetic topological semimetals, only the characteristic temperatures differ for these materials. The specifics of our experiment is the excellent temperature stability of the second phase, while the skyrmions are usually observed near the Curie temperature. On the other hand, temperature stability can be expected for surface-state induced spin textures due to the topological protection of surface states in topological semimetals. This also explains the universal behavior of the second phase for two different topological semimetals Co3Sn2S2 and FGT. Both these materials have strongly different bulk properties, the only similarity is the presence of the topological surface states. Thus, we can ascribe the second, temperature-stable magnetic phase to the surface states in topological semimetals.